1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
| #include <bits/stdc++.h>
namespace Modular { template<class T> T qpow(T bs, T idx, T kMod) { bs %= kMod; int ret = 1; for (; idx; idx >>= 1, bs = 1ll * bs * bs % kMod) if (idx & 1) ret = 1ll * ret * bs % kMod; return ret; } int inv(int x, int kMod) { x %= kMod; if (!x) { std::cerr << "inv error\n"; return 0; } return qpow(x, kMod - 2, kMod); } template<class T, const T kMod> T add(T x, T y) { if (x + y >= kMod) return x + y - kMod; else return x + y; }
template<class T, const T kMod> T minu(T x, T y) { if (x - y < 0) return x - y + kMod; else return x - y; }
template<class T, const T kMod> struct Mint { T x;
Mint() { x = 0; } template<class _T> Mint(_T _x) { x = _x; }
friend Mint operator +(Mint m1, Mint m2) { return Mint(Modular::add<T, kMod>(m1.x, m2.x)); } friend Mint operator -(Mint m1, Mint m2) { return Mint(Modular::minu<T, kMod>(m1.x, m2.x)); } friend Mint operator *(Mint m1, Mint m2) { return Mint(1ll * m1.x * m2.x % kMod); } friend Mint operator /(Mint m1, Mint m2) { return Mint(1ll * m1.x * inv(m2.x, kMod) % kMod); } Mint operator +=(Mint m2) { return x = Modular::add<T, kMod>(x, m2.x); } Mint operator -=(Mint m2) { return x = Modular::minu<T, kMod>(x, m2.x); } Mint operator *=(Mint m2) { return x = 1ll * x * m2.x % kMod; } Mint operator /=(Mint m2) { return x = 1ll * x * inv(m2.x, kMod) % kMod; }
template<class _T> friend Mint operator +(Mint m1, _T m2) { return Mint(Modular::add<T, kMod>(m1.x, m2 % kMod)); } template<class _T> friend Mint operator -(Mint m1, _T m2) { return Mint(Modular::minu<T, kMod>(m1.x, m2 % kMod)); } template<class _T> friend Mint operator *(Mint m1, _T m2) { return Mint(1ll * m1.x * m2 % kMod); } template<class _T> friend Mint operator /(Mint m1, _T m2) { return Mint(1ll * m1.x * inv(m2, kMod) % kMod); } template<class _T> Mint operator +=(_T m2) { return x = Modular::add<T, kMod>(x, m2); } template<class _T> Mint operator -=(_T m2) { return x = Modular::minu<T, kMod>(x, m2); } template<class _T> Mint operator *=(_T m2) { return x = 1ll * x * m2 % kMod; } template<class _T> Mint operator /=(_T m2) { return x = 1ll * x * inv(m2, kMod) % kMod; } template<class _T> friend Mint operator +(_T m1, Mint m2) { return Mint(Modular::add<T, kMod>(m1 % kMod, m2.x)); } template<class _T> friend Mint operator -(_T m1, Mint m2) { return Mint(Modular::minu<T, kMod>(m1 % kMod, m2)); } template<class _T> friend Mint operator *(_T m1, Mint m2) { return Mint(1ll * m1 * m2.x % kMod); } template<class _T> friend Mint operator /(_T m1, Mint m2) { return Mint(1ll * m1 * inv(m2.x, kMod) % kMod); } friend Mint operator -(Mint &m1) { return Mint(m1.x == 0 ? (kMod - 1) : (m1.x - 1)); } friend Mint operator --(Mint &m1) { return m1 = Mint(m1.x == 0 ? (kMod - 1) : (m1.x - 1)); } friend Mint operator ++(Mint &m1) { return m1 = Mint(m1.x == (kMod - 1) ? 0 : (m1.x + 1)); } friend bool operator ==(Mint m1, Mint m2) { return m1.x == m2.x; }
friend std::istream &operator >>(std::istream &is, Mint &m) { int x; is >> x; m = Mint(x); return is; } friend std::ostream &operator <<(std::ostream &os, Mint m) { os << m.x; return os; } }; }
using mint = Modular::Mint<int, 998244353>;
const int kMaxN = 505;
int n; int sz[kMaxN]; std::vector<int> G[kMaxN]; mint f[kMaxN], g[kMaxN][kMaxN], fac[kMaxN], ifac[kMaxN];
mint C(int m, int n) { if (m < n || m < 0 || n < 0) return 0; return fac[m] * ifac[n] * ifac[m - n]; }
void dfs1(int u, int fa) { f[u] = sz[u] = 1; int ct = 0; for (auto v : G[u]) { if (v == fa) continue; dfs1(v, u); sz[u] += sz[v]; f[u] *= f[v] * (++ct); } }
void dfs2(int u, int fa) { static mint ff[kMaxN][kMaxN], tmp[kMaxN]; for (int i = 0; i <= n; ++i) for (int j = 0; j <= n; ++j) ff[i][j] = 0; ff[0][0] = 1; int now = 0, cnt = 0; mint mul = 1; for (auto v : G[u]) { if (v == fa) continue; mul *= f[v]; ++cnt; for (int i = cnt; i; --i) for (int j = sz[v]; j <= n; ++j) ff[i][j] += ff[i - 1][j - sz[v]]; now += sz[v]; } for (auto v : G[u]) { if (v == fa) continue; for (int i = 0; i <= n; ++i) tmp[i] = 0; for (int i = 1; i <= cnt; ++i) for (int j = sz[v]; j <= n; ++j) ff[i][j] -= ff[i - 1][j - sz[v]]; for (int i = 0; i <= cnt - 1; ++i) { for (int j = 0; j <= n; ++j) { tmp[j] += ff[i][j] * fac[i] * fac[cnt - 1 - i] * mul; } } for (int i = cnt; i; --i) for (int j = sz[v]; j <= n; ++j) ff[i][j] += ff[i - 1][j - sz[v]]; mint val = 1 / f[u]; for (int i = 0; i <= n; ++i) for (int j = 0; j <= n - 1 - i; ++j) g[v][i + j + 1] += g[u][i] * tmp[j] * val; } for (auto v : G[u]) { if (v == fa) continue; dfs2(v, u); } }
void dickdreamer() { std::cin >> n; for (int i = 1; i < n; ++i) { int u, v; std::cin >> u >> v; G[u].emplace_back(v), G[v].emplace_back(u); } fac[0] = ifac[0] = 1; for (int i = 1; i <= n; ++i) { fac[i] = fac[i - 1] * i; ifac[i] = 1 / fac[i]; } dfs1(1, 0); g[1][1] = 1; dfs2(1, 0); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) std::cout << g[i][j] * f[1] << ' '; std::cout << '\n'; } }
int32_t main() { #ifdef ORZXKR freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); #endif std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0); int T = 1; while (T--) dickdreamer(); return 0; }
|