CF666E Forensic Examination 题解

Description

给你一个串 SS 以及一个字符串数组 T1mT_{1\ldots m}qq 次询问,每次问 SS 的子串 S[plpr]S[p_l\ldots p_r]TlrT_{l\ldots r} 中的哪个串里的出现次数最多,并输出出现次数。

如有多解输出最靠前的那一个。

S,q5×105|S|,q\leq 5\times 10^5m,Ti5×104m,\sum|T_i|\leq 5\times 10^4

Solution

首先将 SST1,T2,,TmT_1,T_2,\ldots,T_m 中间用不同的特殊字符拼起来,然后跑一遍 SA,就转化为求 TlrT_{l\ldots r} 里对应位置和 rkplrk_{p_l} 的区间 height 最小值不小于 prpl+1p_r-p_l+1 的最大个数。

考虑将 heightheight 数组看成一个长度为 lenlen 的链的边权,用 kruskal 重构树就将上面的问题转化为求某个点子树的区间众数。

线段树合并即可。

时间复杂度:O(SlogS+q(logS+logm))O(|S'|\log |S'|+q(\log |S'|+\log m))

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <bits/stdc++.h>

// #define int int64_t

using pii = std::pair<int, int>;

const int kMaxN = 5e5 + 5, kMaxL = 6e5 + 5;

struct Node {
int ls, rs;
pii p;
} tt[kMaxL * 50];

int n, m, q, len, cnt;
int a[kMaxL], sa[kMaxL], rk[kMaxL], height[kMaxL], bel[kMaxL];
int fa[kMaxL], idd[kMaxL], val[kMaxL * 2], p[kMaxL * 2][22];
int rt[kMaxL * 2];
pii ans[kMaxN];
std::string s, t[kMaxN];
std::vector<int> T[kMaxL * 2];
std::vector<std::tuple<int, int, int>> qq[kMaxL * 2];

pii merge(pii a, pii b) {
if (!a.first) a.second = -1e9;
if (!b.first) b.second = -1e9;
if (a.second > b.second) return a;
else if (a.second < b.second) return b;
else return std::min(a, b);
}

void getsa(int n, int *a, int *sa, int *rk) {
static int cnt[kMaxL], id[kMaxL], ork[kMaxL * 2] = {0};
for (int i = 1; i <= n; ++i) ++a[i];
int v = *std::max_element(a + 1, a + 1 + n), m = 0;
for (int i = 1; i <= n; ++i) ++cnt[a[i]];
for (int i = 1; i <= v; ++i) cnt[i] += cnt[i - 1];
for (int i = n; i; --i) sa[cnt[a[i]]--] = i;
for (int i = 1; i <= n; ++i) {
if (a[sa[i]] == a[sa[i - 1]]) rk[sa[i]] = rk[sa[i - 1]];
else rk[sa[i]] = ++m;
}
for (int w = 1; m < n; w <<= 1) {
for (int i = 1; i <= n; ++i) ork[i] = rk[i];
int p = 0;
for (int i = n - w + 1; i <= n; ++i) id[++p] = i;
for (int i = 1; i <= n; ++i)
if (sa[i] > w)
id[++p] = sa[i] - w;
std::fill_n(cnt + 1, m, 0);
for (int i = 1; i <= n; ++i) ++cnt[rk[i]];
for (int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
for (int i = n; i; --i) sa[cnt[rk[id[i]]]--] = id[i];
m = 0;
for (int i = 1; i <= n; ++i) {
if (ork[sa[i]] == ork[sa[i - 1]] && ork[sa[i] + w] == ork[sa[i - 1] + w]) rk[sa[i]] = rk[sa[i - 1]];
else rk[sa[i]] = ++m;
}
}
}

void getheight(int n, int *a, int *sa, int *rk, int *height) {
for (int i = 1, p = 0; i <= n; ++i) {
if (p) --p;
int j = sa[rk[i] - 1];
if (i && j && p) assert(a[i + p - 1] == a[j + p - 1]);
for (; p < n - std::max(i, j) && a[i + p] == a[j + p]; ++p) {}
height[rk[i]] = p;
}
}

int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
void unionn(int x, int y, int v) {
int fx = find(x), fy = find(y);
if (fx != fy) {
fa[fx] = fy, val[++cnt] = v;
T[cnt].emplace_back(idd[fx]), T[cnt].emplace_back(idd[fy]);
p[idd[fx]][0] = p[idd[fy]][0] = cnt, idd[fy] = cnt;
}
}

void build() {
for (int i = 1; i <= len; ++i) fa[i] = idd[i] = i;
cnt = len;
std::vector<std::pair<int, int>> vec;
for (int i = 2; i <= len; ++i) vec.emplace_back(height[i], i);
std::sort(vec.begin(), vec.end(), std::greater<>());
for (auto [v, x] : vec) unionn(x - 1, x, v);
}

void prework() {
int now = 26;
for (int i = 1; i <= n; ++i) a[++len] = s[i] - 'a';
a[++len] = ++now;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j < t[i].size(); ++j)
a[++len] = t[i][j] - 'a', bel[len] = i;
a[++len] = ++now;
}
getsa(len, a, sa, rk), getheight(len, a, sa, rk, height), build();
for (int i = cnt; i; --i)
for (int j = 1; j <= std::__lg(cnt); ++j)
p[i][j] = p[p[i][j - 1]][j - 1];
}

std::pair<int, int> solve(int l, int r, int pl, int pr) {
static int cnt[kMaxN];
std::fill_n(cnt + 1, m, 0);
int mi = 1e9;
for (int i = rk[pl] + 1; i <= len; ++i) {
mi = std::min(mi, height[i]);
if (mi >= pr - pl + 1) ++cnt[bel[sa[i]]];
else break;
}
mi = 1e9;
for (int i = rk[pl]; i > 1; --i) {
mi = std::min(mi, height[i]);
if (mi >= pr - pl + 1) ++cnt[bel[sa[i - 1]]];
else break;
}
std::pair<int, int> ret = {-1, -1};
for (int i = l; i <= r; ++i) {
if (cnt[i] > ret.second || cnt[i] == ret.second && i < ret.first)
ret = {i, cnt[i]};
}
return ret;
}

int gettop(int x, int v) {
for (int i = std::__lg(len); ~i; --i)
if (val[p[x][i]] >= v)
x = p[x][i];
return x;
}

void pushup(int x) {
tt[x].p = merge(tt[tt[x].ls].p, tt[tt[x].rs].p);
}

void update(int &x, int l, int r, int ql, int v) {
static int sgt_cnt = 0;
if (!x) x = ++sgt_cnt;
if (l == r) {
tt[x].p.first = l, tt[x].p.second += v;
return;
}
int mid = (l + r) >> 1;
if (ql <= mid) update(tt[x].ls, l, mid, ql, v);
else update(tt[x].rs, mid + 1, r, ql, v);
pushup(x);
}

int merge(int x, int y, int l, int r) {
if (!x || !y) return x + y;
if (l == r) {
tt[x].p.first = l, tt[x].p.second += tt[y].p.second;
return x;
}
int mid = (l + r) >> 1;
tt[x].ls = merge(tt[x].ls, tt[y].ls, l, mid), tt[x].rs = merge(tt[x].rs, tt[y].rs, mid + 1, r);
pushup(x);
return x;
}

pii query(int x, int l, int r, int ql, int qr) {
if (l > qr || r < ql) return {0, 0};
else if (!x) return {std::max(l, ql), 0};
else if (l >= ql && r <= qr) return tt[x].p;
int mid = (l + r) >> 1;
return merge(query(tt[x].ls, l, mid, ql, qr), query(tt[x].rs, mid + 1, r, ql, qr));
}

void dfs(int u) {
// static int cnt[500][500] = {0};
if (u <= len && bel[sa[u]]) update(rt[u], 1, m, bel[sa[u]], 1);
for (auto v : T[u]) {
dfs(v);
rt[u] = merge(rt[u], rt[v], 1, m);
}
for (auto [l, r, id] : qq[u]) {
// ans[id] = {-1, -1};
// for (int i = l; i <= r; ++i) ans[id] = merge(ans[id], {i, cnt[u][i]});
ans[id] = query(rt[u], 1, m, l, r);
}
}

void dickdreamer() {
std::cin >> s >> m;
n = s.size(), s = " " + s;
for (int i = 1; i <= m; ++i) {
std::cin >> t[i];
t[i] = " " + t[i];
}
prework();
std::cin >> q;
for (int i = 1; i <= q; ++i) {
int l, r, pl, pr;
std::cin >> l >> r >> pl >> pr;
// auto p = solve(l, r, pl, pr);
// std::cout << p.first << ' ' << p.second << '\n';
qq[gettop(rk[pl], pr - pl + 1)].emplace_back(l, r, i);
}
dfs(cnt);
for (int i = 1; i <= q; ++i) std::cout << ans[i].first << ' ' << ans[i].second << '\n';
}

int32_t main() {
#ifdef ORZXKR
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int T = 1;
// std::cin >> T;
while (T--) dickdreamer();
// std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
return 0;
}

CF666E Forensic Examination 题解
https://sobaliuziao.github.io/2025/02/20/post/4c2b1178.html
作者
Egg_laying_master
发布于
2025年2月20日
许可协议