1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
| #include <bits/stdc++.h>
#define int int64_t
const int kMaxN = 6e3 + 5;
int n, m, k; int a[kMaxN], b[kMaxN], deg[kMaxN], now[kMaxN], w[kMaxN][kMaxN]; bool vis[kMaxN];
namespace Dinic { const int kMaxN = 1e4, kMaxM = 1e5 + 5, kInf = 1e9;
struct Node { int v, w, c, pre; } e[kMaxM];
int tot = 1, n, s, t, cost; int tail[kMaxN], dis[kMaxN], cur[kMaxN]; bool inq[kMaxN], vis[kMaxN];
void adde(int u, int v, int w, int c) { e[++tot] = {v, w, c, tail[u]}, tail[u] = tot; } void add(int u, int v, int w, int c) { adde(u, v, w, c), adde(v, u, 0, -c); } void init(int _n, int _s, int _t) { std::fill_n(tail, n + 1, 0); cost = 0, n = _n, s = _s, t = _t; } void clear() { std::fill_n(tail, n + 1, 0); cost = n = s = t = 0, tot = 1; }
bool spfa(bool o) { std::queue<int> q; for (int i = 1; i <= n; ++i) { dis[i] = kInf, cur[i] = tail[i], inq[i] = vis[i] = 0; } q.emplace(s), dis[s] = 0, inq[s] = 1; for (; !q.empty();) { int u = q.front(); inq[u] = 0, q.pop(); for (int i = tail[u]; i; i = e[i].pre) { int v = e[i].v, w = e[i].w, c = e[i].c; if (w && dis[v] > dis[u] + c) { dis[v] = dis[u] + c; if (!inq[v]) q.emplace(v), inq[v] = 1; } } } return dis[t] < (!o ? kInf : 0); }
int dfs(int u, int lim) { if (u == t || !lim) { cost += lim * dis[t]; return lim; } vis[u] = 1; int flow = 0; for (int &i = cur[u]; i; i = e[i].pre) { int v = e[i].v, w = e[i].w; if (!vis[v] && w && dis[v] == dis[u] + e[i].c) { int tmp = dfs(v, std::min(w, lim)); if (!tmp) dis[v] = kInf; e[i].w -= tmp, e[i ^ 1].w += tmp; lim -= tmp, flow += tmp; if (!lim) break; } } vis[u] = 0; return flow; }
std::pair<int, int> maxflow(bool o) { int64_t ans = 0; for (; spfa(o); ans += dfs(s, kInf)) {} return {ans, cost}; } }
namespace No_ok_flow { const int kMaxN = 1e4, kMaxM = 1e5 + 5, kInf = 1e9;
int n, s, t, flow, cost, d[kMaxN];
void init(int _n) { for (int i = 0; i <= n; ++i) d[i] = 0; n = _n, s = n + 1, t = n + 2, cost = 0; Dinic::clear(), Dinic::init(t, s, t); }
void add(int u, int v, int l, int r, int c) { Dinic::add(u, v, r - l, c), d[u] -= l, d[v] += l, flow += l, cost += l * c, w[u][v] += l; }
bool solve() { int tot = 0; for (int i = 1; i <= n; ++i) { if (d[i] > 0) Dinic::add(s, i, d[i], 0), tot += d[i]; else if (d[i] < 0) Dinic::add(i, t, -d[i], 0); } return tot == Dinic::maxflow(0).first; } }
namespace Yes_max_flow { const int kInf = 1e9;
int n, s, t;
void add(int u, int v, int l, int r, int c) { No_ok_flow::add(u, v, l, r, c); }
void init(int _n, int _s, int _t) { n = _n, s = _s, t = _t; No_ok_flow::init(n), No_ok_flow::add(t, s, 0, kInf, 0); }
std::pair<int, int> maxflow() { if (!No_ok_flow::solve()) return {-1, -1}; Dinic::s = s, Dinic::t = t; auto [flow, cost] = Dinic::maxflow(1); return {flow, cost + No_ok_flow::cost}; } }
namespace Flow { void init(int _n, int _s, int _t) { Yes_max_flow::init(_n, _s, _t); } void add(int u, int v, int l, int r, int c) { if (c >= 0) Yes_max_flow::add(u, v, l, r, c); else Yes_max_flow::add(u, v, r, r, c), Yes_max_flow::add(v, u, 0, r - l, -c); } std::pair<int, int> maxflow() { return Yes_max_flow::maxflow(); } }
void dickdreamer() { std::cin >> n >> m >> k; for (int i = 1; i <= k; ++i) std::cin >> a[i] >> b[i], deg[a[i]] ^= 1, deg[b[i]] ^= 1; int s = n + m + 1, t = s + 1; Flow::init(t, s, t); for (int i = 1; i <= n; ++i) Flow::add(s, i, 0, 1, 0); for (int i = 1; i <= m; ++i) Flow::add(i + n, t, 0, 1, 0); for (int i = 1; i <= k; ++i) { if (deg[a[i]] == deg[b[i]]) Flow::add(a[i], b[i], 0, 1, -1); else Flow::add(b[i], a[i], 0, 1, -1); } auto [flow, cost] = Flow::maxflow(); for (int i = 1; i <= Dinic::n; ++i) { for (int eid = Dinic::tail[i]; eid; eid = Dinic::e[eid].pre) w[i][Dinic::e[eid].v] += Dinic::e[eid].w; } for (int i = 1; i <= k; ++i) { if (deg[a[i]] == deg[b[i]]) vis[i] = w[b[i]][a[i]]; else vis[i] = w[a[i]][b[i]]; now[a[i]] ^= vis[i], now[b[i]] ^= vis[i]; } std::vector<int> vec; for (;;) { int id = 0; for (int i = 1; i <= k; ++i) { if (!vis[i]) continue; int o = (deg[a[i]] ^ deg[b[i]] ^ 1); if (now[a[i]] == o && now[b[i]] == o) { id = i; break; } } if (!id) break; vec.emplace_back(id), vis[id] = 0, now[a[id]] ^= 1, now[b[id]] ^= 1; } std::reverse(vec.begin(), vec.end()); std::cout << vec.size() << '\n'; for (auto x : vec) std::cout << x << ' '; }
int32_t main() { #ifdef ORZXKR freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); #endif std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0); int T = 1; while (T--) dickdreamer(); return 0; }
|